The extremal function associated to intrinsic norms
نویسندگان
چکیده
Through the study of the degenerate complex Monge-Ampère equation, we establish the optimal regularity of the extremal function associated to intrinsic norms of Chern-Levine-Nirenberg and Bedford-Taylor. We prove a conjecture of Chern-Levine-Nirenberg on the extended intrinsic norms on complex manifolds and verify Bedford-Taylor’s representation formula for these norms in general.
منابع مشابه
Extremal Positive Solutions For The Distributed Order Fractional Hybrid Differential Equations
In this article, we prove the existence of extremal positive solution for the distributed order fractional hybrid differential equation$$int_{0}^{1}b(q)D^{q}[frac{x(t)}{f(t,x(t))}]dq=g(t,x(t)),$$using a fixed point theorem in the Banach algebras. This proof is given in two cases of the continuous and discontinuous function $g$, under the generalized Lipschitz and Caratheodory conditions.
متن کاملExtremal Solutions of the Two-dimensional L-problem of Moments, Ii
All extremal solutions of the truncated L-problem of moments in two real variables , with support contained in a given compact set, are described as characteristic functions of semi-algebraic sets given by a single polynomial inequality. An exponential kernel, arising as the determinantal function of a naturally associated hyponormal operator with rank-one self-commutator, provides a natural de...
متن کامل1 7 Ju n 20 13 Extremal norms for positive linear inclusions
For finite-dimensional linear semigroups which leave a proper cone invariant it is shown that irreducibility with respect to the cone implies the existence of an extremal norm. In case the cone is simplicial a similar statement applies to absolute norms. The semigroups under consideration may be generated by discrete-time systems, continuous-time systems or continuous-time systems with jumps. T...
متن کاملThe Multiplication Operator, Zero Location and Asymptotic for Non-diagonal Sobolev Norms
In this paper we are going to study the zero location and asymptotic behavior of extremal polynomials with respect to a generalized non-diagonal Sobolev norm in which the product of the function and its derivative appears. The orthogonal polynomials with respect to this Sobolev norm are a particular case of those extremal polynomials. The multiplication operator by the independent variable is t...
متن کاملNorms Extremal with Respect to the Mahler Measure
In this paper, we introduce and study several norms which are constructed in order to satisfy an extremal property with respect to the Mahler measure. These norms are a natural generalization of the metric Mahler measure introduced by Dubickas and Smyth. We show that bounding these norms on a certain subspace implies Lehmer’s conjecture and in at least one case that the converse is true as well...
متن کامل